Saturday, April 7, 2018

Discovery of DNA 1869 to 2004


The discovery in 1953 of the double helix, the twisted-ladder structure of deoxyribonucleic acid (DNA), by James Watson and Francis Crick marked a milestone in the history of science and gave rise to modern molecular biology, which is largely concerned with understanding how genes control the chemical processes.

DNA was first isolated by the Swiss physician Friedrich Miescher who, in 1869, discovered a microscopic substance in the pus of discarded surgical bandages. As it resided in the nuclei of cells, he called it "nuclein". In 1878, Albrecht Kosselisolated the non-protein component of "nuclein", nucleic acid, and later isolated its five primary nucleobases

In 1919, Phoebus Levene identified the base, sugar, and phosphate nucleotide unit. Levene suggested that DNA consisted of a string of nucleotide units linked together through the phosphate groups. Levene thought the chain was short and the bases repeated in a fixed order.

In 1937, William Astbury produced the first X-ray diffraction patterns that showed that DNA had a regular structure. In

1927, Nikolai Koltsov proposed that inherited traits would be inherited via a "giant hereditary molecule" made up of "two mirror strands that would replicate in a semi-conservative fashion using each strand as a template". 

In 1928, Frederick Griffith in his experiment discovered that traits of the "smooth" form of Pneumococcus could be transferred to the "rough" form of the same bacteria by mixing killed "smooth" bacteria with the live "rough" form. 

This system provided the first clear suggestion that DNA carries genetic information—the Avery–MacLeod–McCarty experiment—when Oswald Avery, along with coworkers Colin MacLeod and Maclyn McCarty, identified DNA as the transforming principle in 1943. 

DNA's role in heredity was confirmed in 1952 when Alfred Hershey and Martha Chase in the Hershey–Chase experiment showed that DNA is the genetic material of the T2 phage.

Late in 1951, Francis Crick started working with James Watson at the Cavendish Laboratory within the University of Cambridge. In 1953, Watson and Crick suggested what is now accepted as the first correct double-helix model of DNA structure in the journal Nature

Their double-helix, molecular model of DNA was then based on one X-ray diffraction image (labeled as "Photo 51") taken by Rosalind Franklin and Raymond Gosling in May 1952, and the information that the DNA bases are paired. On 28 February 1953 Crick interrupted patrons' lunchtime at The Eagle pub in Cambridge to announce that he and Watson had "discovered the secret of life".

Experimental evidence supporting the Watson and Crick model was published in a series of five articles in the same issue of Nature. Of these, Franklin and Gosling's paper was the first publication of their own X-ray diffraction data and original analysis method that partly supported the Watson and Crick model; this issue also contained an article on DNA structure by Maurice Wilkins and two of his colleagues, whose analysis and in vivo B-DNA X-ray patterns also supported the presence in vivo of the double-helical DNA configurations as proposed by Crick and Watson for their double-helix molecular model of DNA in the prior two pages of Nature

In 1962, after Franklin's death, Watson, Crick, and Wilkins jointly received the Nobel Prize in Physiology or Medicine. Nobel Prizes are awarded only to living recipients. A debate continues about who should receive credit for the discovery.

In an influential presentation in 1957, Crick laid out the central dogma of molecular biology, which foretold the relationship between DNA, RNA, and proteins, and articulated the "adaptor hypothesis". 

Final confirmation of the replication mechanism that was implied by the double-helical structure followed in 1958 through the Meselson–Stahl experiment. Further work by Crick and coworkers showed that the genetic code was based on non-overlapping triplets of bases, called codons, allowing Har Gobind KhoranaRobert W. Holley, and Marshall Warren Nirenberg to decipher the genetic code. These findings represent the birth of molecular biology.


The Human Genome Project was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint
Key findings of the draft (2001) and complete (2004) genome sequences include:
There are approximately 22,300 protein-coding genes in human beings, the same range as in other mammals.
The human genome has significantly more segmental duplications (nearly identical, repeated sections of DNA) than had been previously suspected.
At the time when the draft sequence was published fewer than 7% of protein families appeared to be vertebrate specific.


Norb Leahy, Dunwoody GA Tea Party Leader

No comments:

Post a Comment