Tuesday, April 3, 2018

Refrigeration 1755 to 2018


In 1927, GE released the Monitor Top, the first refrigerator to run on electricity.

William Cullen, the first to conduct experiments into artificial refrigeration. The history of artificial refrigeration began when Scottish professor William Cullen designed a small refrigerating machine in 1755. Cullen used a pump to create a partial vacuum over a container of diethyl ether, which then boiled, absorbing heat from the surrounding air. The experiment even created a small amount of ice, but had no practical application at that time.

In 1758, Benjamin Franklin and John Hadley, professor of chemistry, collaborated on a project investigating the principle of evaporation as a means to rapidly cool an object at Cambridge UniversityEngland. They confirmed that the evaporation of highly volatile liquids, such as alcohol and ether, could be used to drive down the temperature of an object past the freezing point of water. They conducted their experiment with the bulb of a mercury thermometer as their object and with a bellows used to quicken the evaporation; they lowered the temperature of the thermometer bulb down to 7 °F (−14 °C), while the ambient temperature was 65 °F (18 °C). They noted that soon after they passed the freezing point of water (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about a quarter inch thick when they stopped the experiment upon reaching 7 °F (−14 °C). Franklin wrote, "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day". In 1805, American inventor Oliver Evans described a closed vapor-compression refrigeration cycle for the production of ice by ether under vacuum.

In 1820 the English scientist Michael Faraday liquefied 
ammonia and other gases by using high pressures and low temperatures, and in 1834, an American expatriate to Great Britain, Jacob Perkins, built the first working vapor-compression refrigeration system in the world. It was a closed-cycle that could operate continuously, as he described in his patent: I am enabled to use volatile fluids for the purpose of producing the cooling or freezing of fluids, and yet at the same time constantly condensing such volatile fluids, and bringing them again into operation without waste.
His prototype system worked although it did not succeed commercially.

In 1842, a similar attempt was made by American physician, John Gorrie, who built a working prototype, but it was a commercial failure. Like many of the medical experts during this time, Gorrie thought too much exposure to tropical heat led to mental and physical degeneration, as well as the spread of diseases such as malaria. He conceived the idea of using his refrigeration system to cool the air for comfort in homes and hospitals to prevent disease. American engineer Alexander Twining took out a British patent in 1850 for a vapor compression system that used ether.

The first practical vapor-compression refrigeration system was built by James Harrison, a British journalist who had immigrated to Australia. His 1856 patent was for a vapour-compression system using ether, alcohol, or ammonia. He built a mechanical ice-making machine in 1851 on the banks of the Barwon River at Rocky Point in GeelongVictoria, and his first commercial ice-making machine followed in 1854. Harrison also introduced commercial vapour-compression refrigeration to breweries and meat-packing houses, and by 1861, a dozen of his systems were in operation. He later entered the debate of how to compete against the American advantage of unrefrigerated beef sales to the United Kingdom. In 1873 he prepared the sailing ship Norfolk for an experimental beef shipment to the United Kingdom, which used a cold room system instead of a refrigeration system. The venture was a failure as the ice was consumed faster than expected.

Ferdinand Carré's ice-making device
The first gas absorption refrigeration system using gaseous ammonia dissolved in water (referred to as "aqua ammonia") was developed by Ferdinand Carré of France in 1859 and patented in 1860. Carl von Linde, an engineer specializing in steam locomotives and professor of engineering at the Technological University of Munich in Germany, began researching refrigeration in the 1860s and 1870s in response to demand from brewers for a technology that would allow year-round, large-scale production of lager; he patented an improved method of liquefying gases in 1876. His new process made possible using gases such as ammoniasulfur dioxide (SO2) and methyl chloride (CH3Cl) as refrigerants and they were widely used for that purpose until the late 1920s.

Thaddeus Lowe, an American balloonist, held several patents on ice-making machines. His "Compression Ice Machine" would revolutionize the cold-storage industry. In 1869 other investors and he purchased an old steamship onto which they loaded one of Lowe's refrigeration units and began shipping fresh fruit from New York to the Gulf Coast area, and fresh meat from Galveston, Texas back to New York, but because of Lowe's lack of knowledge about shipping, the business was a costly failure.

Commercial Use Refrigerator Home and consumer use
 
Probably the most widely used current applications of refrigeration are for air conditioning of private homes and public buildings, and refrigerating foodstuffs in homes, restaurants and large storage warehouses. The use of refrigerators in kitchens for storing fruits and vegetables has allowed adding fresh salads to the modern diet year round, and storing fish and meats safely for long periods. Optimum temperature range for perishable food storage is 37 to 41 °F).
 
In commerce and manufacturing, there are many uses for refrigeration. Refrigeration is used to liquify natural gas, oxygennitrogenpropane and methane, for example. In compressed air purification, it is used to condense water vapor from compressed air to reduce its moisture content. In oil refinerieschemical plants, and petrochemical plants, refrigeration is used to maintain certain processes at their needed low temperatures (for example, in alkylation of 
butenes and butane to produce a high octane gasoline component).  Metal workers use refrigeration to temper steel and cutlery.
 
When transporting temperature-sensitive foodstuffs and other materials by trucks, trains, airplanes and seagoing vessels, refrigeration is a necessity. Dairy products are constantly in need of refrigeration, and it was only discovered in the past few decades that eggs needed to be refrigerated during shipment rather than waiting to be refrigerated after arrival at the grocery store. Meats, poultry and fish all must be kept in climate-controlled environments before being sold. Refrigeration also helps keep fruits and vegetables edible longer.

An 1870 refrigerator car design. Hatches in the roof provided access to the tanks for the storage of harvested ice at each end.

Icemaker Patent by Andrew Muhl, dated December 12, 1871.

In 1842 John Gorrie created a system capable of refrigerating water to produce ice. Although it was a commercial failure, it inspired scientists and inventors around the world. France’s Ferdinand Carre was one of the inspired and he created an ice producing system that was simpler and smaller than that of Gorrie. During the Civil War, cities such as New Orleans could no longer get ice from New England via the coastal ice trade. Carre’s refrigeration system became the solution to New Orleans ice problems and by 1865 the city had three of Carre’s machines. In 1867, in San Antonio, Texas, a French immigrant named Andrew Muhl built an ice-making machine to help service the expanding beef industry before moving it to Waco in 1871. In 1873, the patent for this machine was contracted by the Columbus Iron Works, a company acquired by the W. C. Bradley Co., which went on to produce the first commercial ice-makers in the US.

By the 1870s breweries had become the largest users of harvested ice. Though the ice-harvesting industry had grown immensely by the turn of the 20th century, pollution and sewage had begun to creep into natural ice, making it a problem in the metropolitan suburbs. Eventually, breweries began to complain of tainted ice.

Public concern for the purity of water, from which ice was formed, began to increase in the early 1900s with the rise of germ theory. Numerous media outlets published articles connecting diseases such as typhoid fever with natural ice consumption. This caused ice harvesting to become illegal in certain areas of the country. All of these scenarios increased the demands for modern refrigeration and manufactured ice. Ice producing machines like that of Carre’s and Muhl’s were looked to as means of producing ice to meet the needs of grocers, farmers, and food shippers.

Refrigerated railroad cars were introduced in the US in the 1840s for short-run transport of dairy products, but these used harvested ice to maintain a cool temperature.

Dunedin, the first commercially successful refrigerated ship.
The new refrigerating technology first met with widespread industrial use as a means to freeze meat supplies for transport by sea in reefer ships from the British Dominions
and other countries to the British Isles. The first to achieve this breakthrough was an entrepreneur who had emigrated to New ZealandWilliam Soltau Davidson thought that Britain's rising population and meat demand could mitigate the slump in world wool markets that was heavily affecting New Zealand. After extensive research, he commissioned the Dunedin to be refitted with a compression refrigeration unit for meat shipment in 1881.

On February 15, 1882, the Dunedin sailed for London with what was to be the first commercially successful refrigerated shipping voyage, and the foundation of the refrigerated meat industry. The Times commented "Today we have to record such a triumph over physical difficulties, as would have been incredible, even unimaginable, a very few days ago...". The Marlborough—sister ship to the Dunedin – was immediately converted and joined the trade the following year, along with the rival New Zealand Shipping Company vessel Mataurua, while the German Steamer Marsala began carrying frozen New Zealand lamb in December 1882. Within five years, 172 shipments of frozen meat were sent from New Zealand to the United Kingdom, of which only 9 had significant amounts of meat condemned. Refrigerated shipping also led to a broader meat and dairy boom in Australasia and South America. J & E Hall of Dartford, England outfitted the 'SS Selembria' with a vapor compression system to bring 30,000 carcasses of mutton from the Falkland Islands in 1886.

In the years ahead, the industry rapidly expanded to AustraliaArgentina and the United States.
By the 1890s refrigeration played a vital role in the distribution of food. The meat-packing industry relied heavily on natural ice in the 1880s and continued to rely on manufactured ice as those technologies became available. 

By 1900, the meat-packing houses of Chicago had adopted ammonia-cycle commercial refrigeration. By 1914 almost every location used artificial refrigeration. The big meat packers, Armor, Swift, and Wilson, had purchased the most expensive units which they installed on train cars and in branch houses and storage facilities in the more remote distribution areas.

By the middle of the 20th century, refrigeration units were designed for installation on trucks or lorries. Refrigerated vehicles are used to transport perishable goods, such as frozen foods, fruit and vegetables, and temperature-sensitive chemicals. Most modern refrigerators keep the temperature between –40 and –20 °C, and have a maximum payload of around 24,000 kg gross weight (in Europe).

Although commercial refrigeration quickly progressed, it had limitations that prevented it from moving into the household. First, most refrigerators were far too large. Some of the commercial units being used in 1910 weighed between five and two hundred tons. Second, commercial refrigerators were expensive to produce, purchase, and maintain. Lastly, these refrigerators were unsafe. It was not uncommon for commercial refrigerators to catch fire, explode, or leak toxic gases. Refrigeration did not become a household technology until these three challenges were overcome.

An early example of the consumerization of mechanical refrigeration that began in the early 20th century. The refrigerant was sulfur dioxide.

A modern home refrigerator.

During the early 1800s consumers preserved their food by storing food and ice purchased from ice harvesters in iceboxes. In 1803, Thomas Moore patented a metal-lined butter-storage tub which became the prototype for most iceboxes. These iceboxes were used until nearly 1910 and the technology did not progress. In fact, consumers that used the icebox in 1910 faced the same challenge of a moldy and stinky icebox that consumers had in the early 1800s.

General Electric (GE) was one of the first companies to overcome these challenges. In 1911 GE released a household refrigeration unit that was powered by gas. The use of gas eliminated the need for an electric compressor motor and decreased the size of the refrigerator. However, electric companies that were customers of GE did not benefit from a gas-powered unit. Thus, GE invested in developing an electric model. In 1927, GE released the Monitor Top, the first refrigerator to run on electricity.

In 1930, Frigidaire, one of GE’s main competitors, synthesized Freon. With the invention of synthetic refrigerants based mostly on a chlorofluorocarbon (CFC) chemical, safer refrigerators were possible for home and consumer use. Freon led to the development of smaller, lighter, and cheaper refrigerators. The average price of a refrigerator dropped from $275 to $154 with the synthesis of Freon. This lower price allowed ownership of refrigerators in American households to exceed 50%. Freon is a trademark of the DuPont Corporation and refers to these CFCs, and later hydro chlorofluorocarbon (HCFC) and hydro fluorocarbon (HFC), refrigerants developed in the late 1920s. These refrigerants were considered at the time to be less harmful than the commonly-used refrigerants of the time, including methyl formate, ammonia, methyl chloride, and sulfur dioxide. The intent was to provide refrigeration equipment for home use without danger. These CFC refrigerants answered that need.

In the 1970s, though, the compounds were found to be reacting with atmospheric ozone, an important protection against solar ultraviolet radiation, and their use as a refrigerant worldwide was curtailed in the Montreal Protocol of 1987.


Norb Leahy, Dunwoody GA Tea Party Leader

No comments: